IMPROVED ESTIMATORS OF K AND B IN FINITE POPULATIONS

SUKHMINDER SINGH and SARJINDER SINGH
Punjab Agricultural University, Ludhiana 141004

(Received : June, 1987)

Summary

This paper proposes a class of estimators of K and B wider as well as more efficient than those considered by Srivastava, Jhajj and Sharma [5] using auxiliary information on a character x. An empirical investigation is given at the end.
Keywords : Auxiliary informàtion; Ratio type estimators; Regression coefficient; Simple random sampling; Finite population; Asymptotic mean square error.

Introduction and Notations

Ratio type estimators have been very widely used for estimating the population mean \bar{Y} of the study variable y using information on an auxiliary variable x. Among others, Srivastava [4] has defined a large class of estimators \bar{Y}. The optimum values of the parameters used were dependent upon $K=\rho C_{y} / C_{x}$ only. All the estimators belonging to this class of estimators, thus, involved K which is a function of population parameters. When the value of K is unknown, then it is required to be estimated from the given sample. Reddy [3] has also shown the stability of K than the linear regression coefficient $B=S_{x y} / S_{x}^{2}$ in repeated surveys. Thus, the estimation of K and B have independent importance in sample surveys.
Let $V=(1,2, \ldots, N)$ be a finite population of N units and y be the study variable defined on V taking the value y_{i} for the i th unit of
$V(1 \leqslant i \leqslant N)$. Let x be an auxiliary variate correlated with y, taking the value x_{i} on the units ($1 \leqslant i \leqslant N$), information on which is available in advance.

Let us assume that we draw a S.R.S. of size n from V. For simplicity let is assume that N is large as compared to n so that the finite population terms are ignored. Then write

$$
\varepsilon_{0}=\frac{y}{\bar{Y}}-1, \varepsilon=\frac{\bar{x}}{\bar{X}}-1, \delta=\frac{s_{x}^{2}}{S_{x}^{2}}-1, \eta=\frac{s_{x y}}{S_{x y}}-1
$$

We have $E\left(\varepsilon_{0}\right)=E(\varepsilon)=E(\delta)=E(\eta)=0$.

$$
E\left(\varepsilon_{0}^{2}\right)=n^{-1} C_{y}^{2}, E\left(\varepsilon^{2}\right)=n^{-1} C_{x}^{2}, E\left(\varepsilon_{0} \varepsilon\right)=n^{-1} \rho C_{y} C_{x}, E(\varepsilon \delta)=n^{-1} C_{x} \lambda_{03}
$$

$$
E\left(\varepsilon_{0} \delta\right)=n^{-1} C_{y} \lambda_{12}, E\left(\varepsilon_{0} \eta\right)=n^{-1} C_{y} \frac{\lambda_{21}}{\rho}, E(\varepsilon \eta)=n^{-1} C_{x} \frac{\lambda_{12}}{\rho}
$$

and upto terms of order n^{-1}

$$
\begin{aligned}
& E\left(\delta^{2}\right)=n^{-1}\left(\lambda_{04}-1\right), E\left(\eta^{2}\right)=n^{-1}\left(\frac{\lambda_{23}}{\rho^{2}}-1\right) \\
& E(\delta \eta)=n^{-1}\left(\frac{\lambda_{13}}{\rho}-1\right)
\end{aligned}
$$

Srivastava, Jhajj and Sharma [5] considered the following three estimators of K as

$$
k_{1}=\frac{\dot{\bar{x}}}{\bar{y}} \frac{s_{x y}}{s_{x}^{2}}, k_{2}=\frac{\bar{X}}{\bar{Y}} \frac{s_{x y}}{s_{x}^{2}} \text { and } k_{3}=\frac{\bar{X}}{y} \cdot \frac{s_{x y}}{S_{x}^{2}}
$$

and MSEs of these estimators are given by
$\operatorname{MSE}\left(k_{2}\right)=\frac{K^{2}}{n}\left[C_{y}^{2}+C_{x}^{2}-2 \rho C_{y} C_{x}-2 \lambda_{03} C_{x}+2 \lambda_{12} C_{y}+\lambda_{04}\right.$

$$
\left.+\frac{\lambda_{22}}{\rho^{2}}+\frac{2 \lambda_{12}}{\rho} C_{s}-\frac{2 \lambda_{21}}{\rho} C_{y}-\frac{2 \lambda_{19}}{\rho}\right]
$$

$\operatorname{MSE}\left(k_{1}\right)=\frac{K^{2}}{n}\left[C_{y}^{2}+2 \lambda_{12} C_{y}+\lambda_{34}+\frac{\lambda_{22}}{\rho^{2}}-\frac{2 \lambda_{21}}{\rho} C_{y}-\frac{2 \lambda_{15}}{\rho}\right]$
and $\operatorname{MSE}\left(k_{3}\right)=\frac{K^{2}}{n}\left[C_{y}^{2}-1+\frac{\lambda_{22}}{\rho^{2}}-2 \frac{\lambda_{21}}{\rho} C_{y}\right]$
Also they consider the two estimators of the population regression coefficient

$$
B=\frac{S_{x y}}{S_{x}^{2}}, \quad \text { given by } \quad b_{1}=\frac{s_{x y}}{s_{x}^{2}} \quad \text { and } \quad b_{2}=\frac{s_{x y}}{S_{x}^{2}}
$$

and MSES of these estimators are given by

$$
\operatorname{MSE}\left(b_{1}\right)=\frac{B^{2}}{n}\left(\lambda_{04}-\frac{2 \lambda_{12}}{\rho}+\frac{\lambda_{22}}{\rho^{2}}\right)
$$

and $\operatorname{MSE}\left(b_{2}\right)=\frac{B^{2}}{n}\left(\frac{\lambda_{22}}{\rho^{2}}-1\right)$

$$
\text { Improved Estimators of } K=\rho \frac{C_{y}}{C_{x}}
$$

The three estimators of K are

$$
k_{11}=-\frac{\bar{x}}{\bar{y}} \frac{s_{x y}}{s_{x}^{2}} h\left(\frac{\bar{x}}{\bar{X}}\right), \quad k_{2 q}=\frac{\bar{X}}{\bar{y}} \frac{s_{x_{y}}}{s_{x}^{2}} h\left(\frac{\bar{x}}{\bar{X}}\right)
$$

and $k_{33}=\frac{\bar{X}}{\bar{y}} \cdot \frac{s_{a y}}{S_{x}^{2}} h\left(\frac{\bar{x}}{\bar{X}}\right)$.
where $h($.$) is some parametric function such that h(1)=1$ and satisfy some regularity conditions.

Now k_{11} can be written as

$$
\begin{aligned}
& k_{11}= \frac{\bar{X}}{\bar{Y}} \frac{S_{x_{y}}}{S_{x}^{2}}\left[1-\varepsilon_{0}-\delta+\eta+\varepsilon+\varepsilon_{0}^{2}+\varepsilon_{0} \delta-\varepsilon_{0} \eta-\delta \eta-\varepsilon_{0} \varepsilon\right. \\
&\left.-\varepsilon \delta+\varepsilon \eta+\delta^{2}+\therefore\right]\left[1+\varepsilon h_{1}(1)\right] \\
&=K\left[1-\varepsilon_{0}-\delta+\eta+\varepsilon+\varepsilon_{0}^{2}+\varepsilon_{0} \delta-\varepsilon_{0} \eta-\delta \eta-\varepsilon_{0} \varepsilon-\varepsilon \delta+\varepsilon \eta\right. \\
&\left.+\delta^{2}+\varepsilon h_{1}(1)-\varepsilon \delta h_{1}(1)+\varepsilon \eta h_{1}(1)+\ldots .\right]
\end{aligned}
$$

Taking expectation and using the results from previous section, we get

$$
E\left(k_{11}\right)=K+0\left(n^{-1}\right)
$$

and MSEs upto terms of order n^{-1} are given by
$M\left(k_{11}\right)=E\left[k_{1_{1}}-K\right]^{घ}$

$$
\begin{aligned}
= & n^{-2} K^{2}\left[C_{y}^{2}+C_{\infty}^{2}-2 \rho C_{v} C_{x}-2 \lambda_{03} C_{x}+2 \dot{\lambda}_{12} C_{y}+\lambda_{04}+\frac{\lambda_{22}}{\rho^{2}}\right. \\
& \left.+\frac{2 \lambda_{12}}{\rho} C_{x}-\frac{2 \lambda_{21}}{\rho} C_{y}-\frac{2 \lambda_{13}}{\rho}-\left\{C_{x}+\frac{\lambda_{12}}{\rho}-\rho C y-\lambda_{03}\right\}^{2}\right]
\end{aligned}
$$

$=\operatorname{MSE}\left(k_{1}\right)-\frac{K^{2}}{n}\left[C_{x}+\frac{\lambda_{12}}{\rho}-\rho C_{y}-\lambda_{03}\right]^{2}$,
where $\quad h_{1}(1)=\frac{-\left[C_{x}+\frac{\lambda_{12}}{\rho}-\rho C_{v}-\lambda_{0-3}\right] .}{C_{x}}$
Similarly it is easily found that the bias of k_{22} and k_{33} are of order n^{-1} and their mean squared errors upto order n^{-1} are given by

$$
\operatorname{MSE}\left(k_{22}\right)=\operatorname{MSE}\left(k_{2}\right)-\frac{K^{2}}{n}\left(\frac{\lambda_{12}}{\rho}-\rho C_{y}-\lambda_{03}\right)^{2}
$$

where $\quad h_{1}(1)=-\frac{\left(\frac{\lambda_{12}}{\rho}-\rho C_{y}-\lambda_{03}\right)}{C_{x}}$
and $\operatorname{MSE}\left(k_{33}\right)=\operatorname{MSE}\left(k_{3}\right)-\frac{K^{2}}{n}\left(\frac{\lambda_{12}}{\rho}-\rho C_{y}\right)^{2}$
where $h_{1}(1)=-\frac{\left(\frac{\lambda_{12}}{\rho}-\rho C_{y}\right)}{C_{w}}$

$$
\text { Improved Estimators of } B=\frac{S_{x y}}{S_{x}^{2}}
$$

The improved estimators of B are

$$
b_{11}=\frac{s_{x y}}{s_{x}^{2}} h\left(\frac{\bar{x}}{\bar{X}}\right), \quad \quad b_{22}=\frac{s_{x y}}{S_{x}^{2}} \cdot h\left(\frac{\bar{x}}{\bar{X}}\right)
$$

and proceeding as in previous section, obtain the MSEs of b_{11} and b_{22} given by

$$
\operatorname{MSE}\left(b_{11}\right)=\operatorname{MSE}\left(b_{1}\right)-\frac{B^{2}}{n}\left(\frac{\lambda_{12}}{\rho}-\lambda_{03}\right)^{2}
$$

where

$$
h_{1}(1)=-\frac{\left(\frac{\lambda_{12}}{\rho}-\lambda_{03}\right)}{C_{x}}
$$

and $\quad \operatorname{MSE}\left(b_{22}\right)=\operatorname{MSE}\left(b_{2}\right)-\frac{B^{2} \lambda_{12}^{2}}{n \rho^{2}}$
where, $\quad h_{1}(1)=-\frac{\lambda_{12}}{\rho C_{x}}$

The efficiency comparisons of proposed estimators of K and B with the existing estimators are obvious from their MSEs expressions.

Numerical Illustration

For the purpose of numerical illustration of two populations described in Table 1 are taken in the study. In Table 2, the MSEs (upto terms of order n^{-1}) of the estimators k_{i} and b_{i} are compared, respectively, with the class of estimators k_{i} and b_{i} for $i=1,2,3$.

TABLE 1 - DESCRIPTION OF POPULATIONS

TABLE 2- MSEs OF $k_{i}, k_{i d}, b_{i}$ and $b_{i i}$ FOR $i=1,2,3$ UPTO TERMS OF ORDER n^{-1}

Population No.	1/n \times MSE' of									
	k_{1}	k_{11}	- k_{2}	k_{22}	k_{3}	k_{3}	b_{1}	b_{11}	b_{2}	b_{22}
				.						
'1	0.3026	0.1767	0.5194	0.0049	1.3053	1.2325	0.6058	0.5262	2.0098	1.7901
2	0.0411	0.0409	0.3530	0.0020	1.4054	1.2595	0.0921	0.0904	1.9256	1.0392

ACKNOWLEDGEMENT

Authors are thankful to the referee for his valuable comments which helped a lot in improving the earlier draft of manuscript.

REFERENCES

[1] Horvitz, D. G. and Thompson, D. J. (1952) : A generalization of sampling without replacement from a finite universe, Jour. Amer. Stat. Assoc. 47 : 663-685.
[2] Murthy, M. N. (1967) : Sampling Theory and Methods, Statistical Publishing Society, Calcutta.
[3] Reddy, V. N. (1978) : A study on the use of prior knowledge on certain population parameters in estimation, Sankhya Ser. C, 29-37.
[4] Srivastava, S. K. (1971) : A generalized estimator for the mean of a finite population using multi-auxiliary information, Jour. Amer. Stat. Assoc. 66 : 404-407.
[5] Srivastava, S. K., Jhajj, H. S. and Sharma, M. K. (1986) : Comparison of some estimators of K and B in finite populations, Jour. Ind. Soc. Ag. Statistics 38 : 230-236.

