IMPROVED ESTIMATORS OF K AND B IN FINITE POPULATIONS

SUKHMINDER SINGH and SARJINDER SINGH Punjab Agricultural University, Ludhiana 141004 (Received : June, 1987)

Summary

This paper proposes a class of estimators of K and B wider as well as more efficient than those considered by Srivastava, Jhajj and Sharma [5] using auxiliary information on a character x. An empirical investigation is given at the end.

Keywords: Auxiliary information; Ratio type estimators; Regression coefficient; Simple random sampling; Finite population; Asymptotic mean square error.

Introduction and Notations

Ratio type estimators have been very widely used for estimating the population mean \overline{Y} of the study variable y using information on an auxiliary variable x. Among others, Srivastava [4] has defined a large class of estimators \overline{Y} . The optimum values of the parameters used were dependent upon $K = \rho C_y/C_x$ only. All the estimators belonging to this class of estimators, thus, involved K which is a function of population parameters. When the value of K is unknown, then it is required to be estimated from the given sample. Reddy [3] has also shown the stability of K than the linear regression coefficient $B = S_{xy}/S_x^2$ in repeated surveys. Thus, the estimation of K and B have independent importance in sample surveys.

Let V = (1, 2, ..., N) be a finite population of N units and y be the study variable defined on V taking the value y_i for the *i*th unit of

122 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

 $V (1 \le i \le N)$. Let x be an auxiliary variate correlated with y, taking the value x_i on the units $(1 \le i \le N)$, information on which is available in advance.

Let us assume that we draw a S.R.S. of size n from V. For simplicity let us assume that N is large as compared to n so that the finite population terms are ignored. Then write

$$\varepsilon_0 = \frac{\mathcal{P}}{\overline{Y}} - 1, \ \varepsilon = \frac{\overline{x}}{\overline{X}} - 1, \ \delta = \frac{S_x^2}{S_x^2} - 1, \ \eta = \frac{S_{xy}}{S_{xy}} - 1$$

We have $E(\varepsilon_0) = E(\varepsilon) = E(\delta) = E(\eta) = 0$.

 $E(\varepsilon_0^2) = n^{-1} C_y^2, E(\varepsilon^2) = n^{-1} C_x^2, E(\varepsilon_0 \varepsilon) = n^{-1} \rho C_y C_x, E(\varepsilon \delta) = n^{-1} C_x \lambda_{03},$

$$E(\varepsilon_0\delta) = n^{-1} C_y \lambda_{12}, \ E(\varepsilon_0\eta) = n^{-1} C_y \frac{\lambda_{21}}{\rho}, \ E(\varepsilon\eta) = n^{-1} C_x \frac{\lambda_{12}}{\rho}$$

and upto terms of order n^{-1}

$$E(\delta^{2}) = n^{-1} (\lambda_{04} - 1), E(\eta^{2}) = n^{-1} \left(\frac{\lambda_{22}}{\rho^{2}} - 1 \right)$$

$$E(\delta\eta) = n^{-1} \left(\frac{\lambda_{13}}{\rho} - 1 \right)$$

Srivastava, Jhajj and Sharma [5] considered the following three estimators of K as

$$k_1 = \frac{\overline{x}}{\overline{y}} \frac{s_{xy}}{s_x^2}, \ k_2 = \frac{\overline{X}}{\overline{Y}} \frac{s_{xy}}{s_x^2} \text{ and } k_3 = \frac{\overline{X}}{\overline{y}} \frac{s_{xy}}{S_x^2}$$

and MSEs of these estimators are given by

MSE
$$(k_2) = \frac{K^2}{n} \left[C_y^2 + C_x^2 - 2 \rho C_y C_x - 2 \lambda_{03} C_x + 2 \lambda_{12} C_y + \lambda_{04} + \frac{\lambda_{22}}{\rho^2} + \frac{2\lambda_{13}}{\rho} C_x - \frac{2\lambda_{21}}{\rho} C_y - \frac{2\lambda_{13}}{\rho} \right]$$

MSE
$$(k_1) = \frac{K^2}{n} \left[C_y^2 + 2 \lambda_{12} C_y + \lambda_{14} + \frac{\lambda_{22}}{\rho^2} - \frac{2\lambda_{21}}{\rho} C_y - \frac{2\lambda_{13}}{\rho} \right]$$

ESTIMATION OF K AND B

and MSE
$$(k_3) = \frac{K^2}{n} \left[C_y^2 - 1 + \frac{\lambda_{22}}{\rho^2} - 2 \frac{\lambda_{21}}{\rho} C_y \right]$$

Also they consider the two estimators of the population regression coefficient

$$B = \frac{S_{xy}}{S_x^2}$$
, given by $b_1 = \frac{S_{xy}}{S_x^2}$ and $b_2 = \frac{S_{xy}}{S_x^2}$

and MSEs of these estimators are given by

$$MSE(b_1) = \frac{B^2}{n} \left(\lambda_{04} - \frac{2\lambda_{13}}{\rho} + \frac{\lambda_{22}}{\rho^2} \right)$$

and
$$MSE(b_2) = \frac{B^2}{n} \left(\frac{\lambda_{22}}{\rho^2} - 1 \right)$$

Improved Estimators of $K = \rho \frac{C_y}{C_x}$

The three estimators of K aré

$$k_{11} = -\frac{\overline{x}}{\overline{y}} \frac{s_{xy}}{s_x^2} h\left(\frac{\overline{x}}{\overline{X}}\right), \qquad k_{21} = \frac{\overline{X}}{\overline{y}} \frac{s_{xy}}{s_x^2} h\left(\frac{\overline{x}}{\overline{X}}\right)$$

and $k_{33} = \frac{\overline{X}}{\overline{x}} \cdot \frac{s_{xy}}{\overline{x}^2} h\left(\frac{\overline{x}}{\overline{x}}\right).$

where h(.) is some parametric function such that h(1) = 1 and satisfy some regularity conditions.

Now k_{11} can be written as

$$k_{11} = \frac{\overline{X}}{\overline{Y}} \frac{S_{xy}}{S_x^2} \left[1 - \varepsilon_0 - \delta + \eta + \varepsilon + \varepsilon_0^2 + \varepsilon_0 \delta - \varepsilon_0 \eta - \delta \eta - \varepsilon_0 \varepsilon - \varepsilon \delta + \varepsilon \eta + \delta^2 + \dots \right] \left[1 + \varepsilon h_1 \left(1 \right) \right]$$

= $K \left[1 - \varepsilon_0 - \delta + \eta + \varepsilon + \varepsilon_0^2 + \varepsilon_0 \delta - \varepsilon_0 \eta - \delta \eta - \varepsilon_0 \varepsilon - \varepsilon \delta + \varepsilon \eta + \delta^2 + \varepsilon h_1 \left(1 \right) - \varepsilon \delta h_1 \left(1 \right) + \varepsilon \eta h_1 \left(1 \right) + \dots \right]$

123

124 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

Taking expectation and using the results from previous section, we get

$$E(k_{11}) = K + 0 (n^{-1})$$

and MSEs upto terms of order n^{-1} are given by

$$M(k_{11}) = E[k_{11} - K]^{3}$$

$$= n^{-1} K^{2} \left[C_{y}^{2} + C_{x}^{2} - 2\rho C_{y} C_{x} - 2\lambda_{03} C_{x} + 2\lambda_{12} C_{y} + \lambda_{04} + \frac{\lambda_{29}}{\rho^{3}} + \frac{2\lambda_{12}}{\rho} C_{x} - \frac{2\lambda_{21}}{\rho} C_{y} - \frac{2\lambda_{13}}{\rho} - \left\{ C_{x} + \frac{\lambda_{12}}{\rho} - \rho C_{y} - \lambda_{03} \right\}^{3} \right]$$

$$= MSE(k_{1}) - \frac{K^{2}}{n} \left[C_{x} + \frac{\lambda_{12}}{\rho} - \rho C_{y} - \lambda_{03} \right]^{2},$$
where $h_{1}(1) = \frac{-\left[C_{x} + \frac{\lambda_{12}}{\rho} - \rho C_{y} - \lambda_{03} \right]}{C_{x}}$

Similarly it is easily found that the bias of k_{22} and k_{33} are of order n^{-1} and their mean squared errors upto order n^{-1} are given by

MSE
$$(k_{22}) =$$
 MSE $(k_2) - \frac{K^2}{n} \left(\frac{\lambda_{12}}{\rho} - \rho C_{y} - \lambda_{03} \right)^2$,
where $h_1(1) = - \frac{\left(\frac{\lambda_{12}}{\rho} - \rho C_{y} - \lambda_{03} \right)}{C_{y}}$

and MSE $(k_{33}) =$ MSE $(k_3) - \frac{K^2}{n} \left(\frac{\lambda_{12}}{\rho} - \rho C_{\nu} \right)^2$

where $h_1(1) = -\frac{\left(\frac{\lambda_{12}}{\rho} - \rho C_v\right)}{C_{\infty}}$

Improved Estimators of
$$B = \frac{S_{xy}}{S_x^2}$$

The improved estimators of B are

$$b_{11} = \frac{s_{xy}}{s_x^2} h\left(\frac{\bar{x}}{\bar{X}}\right), \qquad b_{22} = \frac{s_{xy}}{S_x^2} h\left(\frac{\bar{x}}{\bar{X}}\right),$$

ESTIMATION OF K AND B

and proceeding as in previous section, obtain the MSEs of b_{11} and b_{22} given by

$$MSE(b_{11}) = MSE(b_1) - \frac{B^2}{n} \left(\frac{\lambda_{12}}{\rho} - \lambda_{\rho 3}\right)^2$$

where

and MSE
$$(b_{22}) = MSE(b_2) - \frac{B^3 \lambda_{12}^2}{n \rho^3}$$

 $h_1(1) = -\frac{\lambda_{12}}{\rho C_x}$

 $h_{1}(1) = -\frac{\left(\frac{\lambda_{13}}{\rho} - \lambda_{03}\right)}{C_{7}}$

where,

Numerical Illustration

For the purpose of numerical illustration of two populations described in Table 1 are taken in the study. In Table 2, the MSEs (upto terms of order n^{-1}) of the estimators k_i and b_i are compared, respectively, with the class of estimators k_{ii} and b_{ij} for i = 1, 2, 3.

Sr. 'No.	Source	⁻ у	<i>x</i>	Ρ.	C _y	C _ø	
1.	Horwitz and Thompson [1]	No. of household	Eye estimate of y	0.8662	0.4264	0.3889	
2.	Murthy [2] p. 3 99 Vill : 1-10	Area under wheat (1964)	Area under wheat (1963)	0.9773 -	0.6187	0.5664	

TABLE 1 - DESCRIPTION OF POPULATIONS

125

Journal of the indian society of agricultural statistics

	UPIO TERMS OF ORDER n -													
Popu lation No.	-	k ₁₁	_ k ₂	k ₂₂	<i>k</i> ₃	k ₃₈	<i>b</i> ₁	<i>b</i> ₁₁	b ₂	b ₂₂				
`1 `	0.3026	0.1767	0.5194	0.0049	1.3053	1.2325	0.6058	0.5262	2.0098	1.7901				
2	0.0411	0.0409	0.3530	0.0020	1.4054	1.2595	0.0921	0.0904	1.9256	1.0392				

TABLE 2- MSEs OF k_i , k_{ii} , b_i and b_{ii} FOR i = 1, 2, 3UPTO TERMS OF ORDER n^{-1}

ACKNOWLEDGEMENT

Authors are thankful to the referee for his valuable comments which helped a lot in improving the earlier draft of manuscript.

REFERENCES

- [1] Horvitz, D. G. and Thompson, D. J. (1952): A generalization of sampling without replacement from a finite universe, Jour. Amer. Stat. Assoc. 47: 663-685.
- [2] Murthy, M. N. (1967): Sampling Theory and Methods, Statistical Publishing Society, Calcutta.
- [3] Reddy, V. N. (1978): A study on the use of prior knowledge on certain population parameters in estimation, Sankhya Ser. C, 29-37.
- [4] Srivastava, S. K. (1971) : A generalized estimator for the mean of a finite population using multi-auxiliary information, *Jour. Amer. Stat. Assoc.* 66 : 404-407.
- [5] Srivastava, S. K., Jhajj, H. S. and Sharma, M. K. (1986): Comparison of some estimators of K and B in finite populations, Jour. Ind. Soc. Ag. Statistics 38: 230-236.

126